NEW SEMISYNTHETIC ANTHRACYCLINE GLYCOSIDES

Josef V. Jizba, Petr Sedmera, Věra Přikrylová, Jindřich Vokoun, Karel Mikulík and Zdenko Vaněk
Institute of Microbiology, Czechoslovak Academy of Sciences, 14220 Prague 4

Received April 1, 1988
Accepted July 15, 1988

Abstract

3-Trifluoroacetamido-4-O-trifluoroacetyl-2,3,6-trideoxy- α, β-L-lyxopyranosyl chloride (VII) was coupled under Koenigs-Knorr glycosidation conditions to (7S)-O-(2-hydroxyethyl)daunomycinone ($I V$), ($7 R$)-O-(2-hydroxyethyl)daunomycinone (V), and (7S)-O-(4-hydroxy-2-butynyl)daunomycinone ($V I)$. The deprotection of isolated N -trifluoroacetyl derivatives of α - and β --glycosides XVI, XVII, XX, XXI, and XXIV yielded free glycosides XVIII, XIX, XXII, XXIII, and $X X V$. Their anomeric configuration was determined by NMR spectroscopy. Reaction of 3,4-di-O-acetyl-2,6-dideoxy- α, β-L-arabinopyranosyl chloride (II) with IV gave glycosides XII and XIII. Their deacetylation provided free glycosides XIV and XV. An analogueous reaction with 3 -acetamido-4-O-acetyl-2,3,6-trideoxy- α, β-L-lyxopyranosyl chloride (III) with $I V$ lead to the N-acetyl glycoside $I X$ only.

Anthracyclines represent a relatively large group of natural, semisynthetic, and synthetic compounds ${ }^{1-3}$. Some compounds of this type are used in cancer treatment, several promissing candidates are in clinical testing ${ }^{4-6}$. Intense work on new anthracyclines involve the modification of both aglycone and sugar moiety. The changes of saccharide part are achieved by substitution of existing groups (N -alkylation, N -acylation, O -alkylation, formation of tetrahydropyranyl derivatives, etc.), changes in configuration of some substituents, deamination or even by an attachment of sugar residues not encountered in natural anthracyclines (mono- and oligosaccharidic), existing in pyranose or furanose forms. However, in all cases mentioned the sugar residues are connected to the secondary hydroxyl group of the aglycone alicyclic ring. Reaction of daunomycinone (I) with diols providing its 7-O-hydroxyalkyl derivatives ${ }^{7}$ opens a way to a new type of glycosides with sugar part bonded to the primary hydroxyl group of the new side chain. This work describes the preparation and properties of glycosides of 2,6-dideoxy- α, β-L-arabinopyranose (2-deoxyrhamnose) and 3 -amino-2,3,6-trideoxy- α, β-L-lyxopyranose (daunosamine) derived from modified aglycones of the daunomycinone type.

Two main approaches for coupling of.sugar to aglycone are most often found in the literature: reaction of a glycal with aglycone, catalyzed by an acid ${ }^{8-12}$ and Koenigs-Knorr reaction starting with a protected glycosyl halogenide. As a catalyst in the latter method is used a mixture of mercuric oxide, mercuric bromide, and
molecular sieve $(3-4 \AA)^{13-15}$, mixture of mercuric cyanide, mercuric bromide, and molecular sieve ${ }^{17}$ or silver trifluoromethyl sulfonate ${ }^{18-20}$. Also described are catalyses by a mixture of trifluoromethanesulfonic acid anhydride, tetrabutylamonium bromide, and 2,4 -colidine at low temperature ${ }^{21,22}$ or by tin(IV) chloride ${ }^{23,24}$. A mixture of both anomers is obtained in most cases. The reaction is usually performed in dichloromethane ${ }^{13}$ or tetrahydrofuran ${ }^{25}$. The deprotection is achieved by standing in methanolic sodium methoxide or aqueous sodium hydroxide solution.

We obtained the best results in the reaction of crude 3,4-di-O-acetyl-2,6-dideoxy-$-\alpha, \beta$-L-arabinopyranosyl chloride (II) and 3-acetamido-4-O-acetyl-2,3,6-trideoxy-$-\alpha, \beta$-L-lyxopyranosyl chloride (III) with ($7 S$)-O-(2-hydroxyethyl)daunomycinone (IV) in chloroform (used for better solubility) employing the mixture of mercuric bromide, mercuric cyanide, and Potasit $3 \AA^{*}$ or by a mixture of mercuric bromide, mercuric oxide, and Potasit $3 \AA$. In the glycosidation of $I V$, its $(7 R)$-analogue V and ($7 S$)-O--(4-hydroxy-2-butynyl)daunomycinone ($V I$) with 3-trifluoroacetamido-4-O-trifluoro-acetyl-2,3,6-trideoxy- α, β-L-lyxopyranosyl chloride (VII), it was necessary to add mercuric cyanide to the mixture of mercuric oxide, mercuric bromide, and Potasit $3 \AA$. The reaction mixture containing α - and β - forms of protected glycoside, starting aglycone, and unreacted glycosyl chloride was separated chromatographically. As expected, the α-anomers prevailed. N-trifluoroacetyl derivatives $X V I, X V I I, X X$, $X X I$, and $X X I V$ were isolated in reactions of $V I I$.
The site of sugar attachment to aglycone was determined by NMR spectroscopy. Negligible changes in chemical shifts of atoms in the vicinity of C-9 allow to exclude this position. Signals of phenolic hydroxyl group protons at C-6 and C-11 observed in ${ }^{1} \mathrm{H}$ NMR spectra (Table I) leave the terminal primary hydroxyl group of the side chain at $\mathrm{C}-7$ as the last possibility. A strong evidence for glycosidation at this position is the downfield shift of signals of the corresponding terminal carbon atoms in ${ }^{13} \mathrm{C}$ NMR spectra with respect to the starting aglycone. The configuration of the anomeric center of the sugar was determined either from the width of the $\mathrm{H}-\mathbf{1}^{\prime}$ signal ($5-6 \mathrm{~Hz}$ for an equatorial, $8-13 \mathrm{~Hz}$ for an axial proton) or from the magnitude of the direct coupling constant ${ }^{1} J\left({ }^{13} \mathrm{C},{ }^{1} \mathrm{H}\right.$) of carbon $\mathrm{C}-1^{\prime}(169-173 \mathrm{~Hz}$ for $\alpha-, 160-164 \mathrm{~Hz}$ for the β-configuration ${ }^{26,27}$. Chemical shift of carbon $\mathrm{C}-1^{\prime}$ (with hexopyranoses always larger in the β-series) was used as a supplementary criterion.

Only one product (VIII) was isolated from the reaction of $I V$ with crude 3 -aceta-mido-4-O-acetyl-2,3,6-trideoxy- α, β-lyxopyranosyl chloride (III). Its deprotection provided the glycoside $I X$, containing according to ${ }^{1} \mathrm{H}$ NMR a N -acetyl group and assigned to the α-series on the basis of the $\mathrm{H}-1^{\prime}$ signal width. When this reaction was performed in tetrahydrofuran in which the aglycone $I V$ is excelently soluble, an another product was isolated. However, its ${ }^{1} \mathrm{H}$ NMR spectrum did not contained neither signals of acetyl groups or the doublet of the secondary methyl C-6 of the

$$
\text { * } \quad 1 \AA=10^{-10} \mathrm{~m}
$$

$1, R=H$
$X X V I, \mathbf{R}=\alpha-Y_{i}, R^{\prime}=\mathbf{R}^{*}=\mathbf{H}$

॥

$$
\begin{aligned}
1 / I, R & =\mathrm{CH}_{3} \mathrm{CO} \\
V I I, R & =\mathrm{CF}_{3} \mathrm{CO}
\end{aligned}
$$

$V, R=H$
$X X, \mathrm{R}=\alpha-Y_{i} \mathrm{R}^{\prime}=\mathrm{CF}_{3} \mathrm{CO} ; \mathrm{R}^{\prime \prime}=\mathrm{H}$
$X X I, \mathrm{R}=\mathrm{B}-\mathrm{Y}_{;} \mathrm{R}^{\prime}=\mathrm{CF}_{3} \mathrm{CO} ; \mathrm{R}^{\prime \prime}=\mathrm{H}$
$X X \|, \mathrm{R}=\boldsymbol{\alpha}-\mathrm{Y}_{;} \mathrm{R}^{\prime}=\mathrm{R}^{\prime}=\mathrm{H}$
$X X I I, R=B-Y ; R^{\prime}=R^{\prime \prime}=H$

$$
N, R=H
$$

$$
V I I I, R=\alpha-Y_{i}, R^{\prime}=R^{\prime}=A c
$$

$$
1 x, \mathbf{R}=\alpha-\mathbf{Y} ; \mathbf{R}^{\prime}=\mathbf{A c} ; \mathbf{R}^{\prime \prime}=\mathbf{H}
$$

$$
x, R=(R)-X
$$

$$
x \mid, R=(s)-x
$$

$$
X I I, R=\alpha-Z ; R^{\prime}=A c
$$

$$
\text { XIII, } \mathbf{R}=\boldsymbol{B}-\mathbf{Z} ; \mathbf{R}=A c
$$

$$
X I V, R=\alpha-Z ; R^{\prime}=H
$$

$$
X V, R=B-Z ; R^{\prime}=H
$$

$$
X V I, R=\alpha-Y ; R^{\prime}=C F_{3} C O ; R^{\prime \prime}=H
$$

$$
X V I I, R=B-Y ; R^{\prime}=\mathrm{CF}_{3} \mathrm{CO}_{;} \mathrm{R}^{\prime}=\mathrm{H}
$$

$$
x \vee I I, R=\alpha-V ; R^{\prime}=R^{\prime \prime}=H
$$

$$
X I X, R=B-Y_{i} R^{\prime}=R^{\prime}=H
$$

$$
V I, R=H
$$

$-X X N, R=\alpha-Y ; R^{\prime}=C_{3} C O ; R^{\prime \prime}=H$
$X X V, R=\alpha-Y_{i} \quad R^{\prime}=R^{\prime \prime}=H$

x

Y

z
sugar residue. Mass spectrum gave a molecular ion $m / z 512, \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{10}$ (Table III). The interpretation of ${ }^{13} \mathrm{C}$ NMR spectrum reveals that all signals in addition to those of the aglycone are doubled and form two series: $\mathrm{OCHO}, \mathrm{OCH}_{2}$, and $\mathrm{CH}_{2} \mathrm{CH}_{2}$. That leads to the conclusion that the products of this reaction are tetrahydrofuryl derivatives $X, X I$ of aglycone $I V$. Koenigs-Knorr reaction of 3,4-di-O-acetyl-2,6--dideoxy- α, β-L-arabinopyranosyl chloride (II) with $I V$ in chloroform yielded two protected glycosides XII and XIII assigned according to the magnitude of ${ }^{1} J\left(\mathrm{C}-1^{1}\right.$, $\mathrm{H}-\mathrm{I}^{\prime}$) (Table II) to the α - and β - series. This conclusion was confirmed by multiplicity of $\mathrm{H}-1^{\prime}$ proton signal in ${ }^{1} \mathrm{H}$ NMR spectra of deprotected glycosides XIV and $X V$. Coupling of VII to the aglycone $I V$ provided a mixture of glycosides isolated as N -trifluoroacetyl derivatives $X V I(\alpha-)$ and $X V I I(\beta-)$ (see Tables I and II). Free glycosides XVIII and XIX were prepared by their deprotection. Reaction of VII with aglycone V gave the α-glycoside $X X$ and a small amount of β-glycoside $X X I$ (Table I). After deprotection, $X X$ gave free glycoside $X X I I$ and $X X I$ gave free XXIII. With aglycone VI, the only isolated product was the protected glycoside XXIV. Multiplets of $\mathrm{H}-1$ ' and $\mathrm{H}-7$ in ${ }^{1} \mathrm{H}$ NMR spectra both $X X I V$ and the free glycoside $X X V$ overlap. Since both multiplets are narrow, these compounds probably belong to the α-series.
Compounds VIII, XII, XIII, XVIII, XX and XXIII inhibited growth of Bacillus subtilis in an orientation agar diffusion test.

EXPERIMENTAL

Melting points were determined in a Kofler apparatus. Optical rotations were measured in chloroform and methanol using a Bendix-Ericson ETL 143A instrument. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were studied with a Jeol FX-60 FT NMR spectrometer (FT mode, 59.797 and 15.036 MHz) at 25 C . Chemical shifts are given in the δ-scale (+0.005 and $\pm 0.06 \mathrm{ppm}$). Multiplicity of ${ }^{13} \mathrm{C}$ NMR signals was determined by off-resonance dccoupling experiments. Direct coupling constants ${ }^{1} J\left({ }^{13} \mathrm{C},{ }^{1} \mathrm{H}\right)$ were measured in proton-coupled spectra obtained by the gated decoupling method (decoupler off during the acquisition). Mass spectra were measured using a Varian MAT-311 instrument (70 eV , ionizing current 1 mA , ion source temperature $200^{\circ} \mathrm{C}$, direct inlet temperature T_{d} given with the individual spectra in Tables III and IV). High-resolution measurements (-3 ppm) were performed by a "peak-matching" technique with perfluorokerosene as a standard. Sephadex LH-20 (Pharmacia, Sweden) and silica gel (Herrmann, F.R.G.) were used for column chromatography. Ready-made plates Silufol R^{20} (Kavalier, Czechoslovakia) or Kieselgel F-60 (Merck, F.R.G.) were used for preparative thin-layer chromatography. Following chromatographic systems węre used: chloroform-benzene-ethyl acetate-methanol $7: 7: 3: 1.5$ (S1), chloroform-hexane - $7: 3$ (S2), hexanc-chloroform-methanol $5: 2: 0.7$ (S3), chloroform--hexane $9: 1$ (S4) and $3: 7$ (S5) and chloroform-methanol-water -26% aqueous ammonium hydroxide $20: 3: 0 \cdot 1: 0 \cdot 01$ (S 6). 3-Amino-2,3,6-trideoxy- $\alpha-\mathrm{L}$-lyxopyranose (daunosamine) was synthetized from L-rhamnose according to ref. ${ }^{28}$. Chloride of its pertrifluoroacetyl derivative (III) was prepared following the known procedure ${ }^{29}$. Starting 2,6 -dideoxy- α, β-L-arabinopyranose (2-deoxyrhamnose) was obtained from L-rhamnose by Iselin-Reichstein method ${ }^{29}$. The protection of hydroxyl groups by acetylation and the preparation of glycosyl chlorides were performed according to ref. ${ }^{13}$. The preparation of aglycones $I V-V I$ was described earlier ${ }^{7}$.

Table I
Proton chemical shifts and coupling constants (Hz , in parentheses) in some anthracyclinone

Compound Solvent ${ }^{b}$	Proton ${ }^{\text {a }}$						
	H-1	H-2	H-3	$4-\mathrm{OCH}_{3}$	$6-\mathrm{OH}$	$11-\mathrm{OH}$	H-7
$\begin{gathered} V I I I \\ \mathrm{C} \end{gathered}$	$\begin{array}{r} 8.03 \mathrm{dd} \\ (7.3,1.2) \end{array}$	$\begin{gathered} 7 \cdot 76 \mathrm{dd} \\ (7 \cdot 3,7 \cdot 3) \end{gathered}$	$\begin{gathered} 7 \cdot 39 \mathrm{dd} \\ (7 \cdot 3,1 \cdot 2) \end{gathered}$	4.08 s	13.92 s	13.27 s	$5 \cdot 12 \mathrm{mt}$
$\begin{array}{r} I X \\ \mathbf{A} \end{array}$	$\begin{gathered} 8.04 \mathrm{dd} \\ (7.3,2.4) \end{gathered}$	$\begin{gathered} 7.79 \mathrm{dd} \\ (7 \cdot 3,7 \cdot 3) \end{gathered}$	$\begin{gathered} 7 \cdot 41 \mathrm{dd} \\ (7 \cdot 3,2 \cdot 4) \end{gathered}$	4.08 s	-	-	$5 \cdot 08 \mathrm{mt}$
$\begin{gathered} X I I \\ \mathrm{~A} \end{gathered}$	$\begin{array}{r} 8.03 \mathrm{dd} \\ (7.8,1.5) \end{array}$	$\begin{array}{r} 7 \cdot 75 \mathrm{dd} \\ (7 \cdot 8,7 \cdot 8) \end{array}$	$\begin{gathered} 7 \cdot 37 \mathrm{dd} \\ (7 \cdot 8,1 \cdot 5) \end{gathered}$	4.08 s	13.92 s	13.25 s	$\begin{aligned} & 4.70- \\ & 5 \cdot 40 \mathrm{mt} \end{aligned}$
$\begin{gathered} X I I I \\ \mathbf{A} \end{gathered}$	$\begin{gathered} 8.03 \mathrm{dd} \\ (7.7,1.8) \end{gathered}$	$\begin{gathered} 7 \cdot 75 \mathrm{dd} \\ (7 \cdot 7,7 \cdot 3) \end{gathered}$	$\begin{array}{r} 7 \cdot 37 \mathrm{dd} \\ (7 \cdot 3,1 \cdot 8) \end{array}$	4.08 s	13.94 s	13.27 s	$\begin{aligned} & 4.47- \\ & 5.28 \mathrm{mt} \end{aligned}$
$\begin{gathered} X I V \\ \mathrm{~A} \end{gathered}$		$7.17-8.08 \mathrm{mt}$		4.08 s	13.92 s	13.27 s	$\begin{gathered} 5 \cdot 10 \mathrm{dd} \\ (2 \cdot 4,3 \cdot 7) \end{gathered}$
$\begin{gathered} X V \\ \mathrm{~A} \end{gathered}$		$7.23-8.08 \mathrm{mt}$		4.08 s	13.92 s	13.27 s	$\begin{gathered} 5.08 \mathrm{mt} \\ W=6.8 \end{gathered}$
$\begin{gathered} X V I \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} 8.06 \mathrm{dd} \\ (7.3,2 \cdot 4) \end{gathered}$	$\begin{array}{r} 7 \cdot 78 \mathrm{t} \\ (7 \cdot 3) \end{array}$	$\begin{gathered} 7 \cdot 41 \mathrm{dd} \\ (7 \cdot 3,2 \cdot 4) \end{gathered}$	4.08 s	-	-	$\begin{gathered} 5.08 \mathrm{mt} \\ W=7.3 \end{gathered}$
$\begin{gathered} X V I I \\ \mathrm{~B} \end{gathered}$		$7.25-8 \cdot 17 \mathrm{mt}$		4.08 s	13.90 s	$13 \cdot 31 \mathrm{~s}$	$\begin{aligned} & 5.06 \mathrm{mt} \\ & W=6.1 \end{aligned}$
$\begin{gathered} X V I I I \\ \text { B } \end{gathered}$		$7.25-8.06 \mathrm{mt}$		4.06 s	-	-	5.04 mt
$\begin{gathered} X I X \\ \mathrm{D} \end{gathered}$		$7.24-8.08 \mathrm{mt}$		$4 \cdot 06 \mathrm{~s}$	-	-	5.96 mt
$\begin{array}{r} X X \\ \mathbf{A} \end{array}$	$\begin{array}{r} 8 \cdot 06 \mathrm{dd} \\ (7 \cdot 3,2 \cdot 0) \end{array}$	$\begin{array}{r} 7 \cdot 76 \mathrm{t} \\ (7 \cdot 3) \end{array}$	$\begin{array}{r} 7 \cdot 37 \mathrm{dd} \\ (7 \cdot 3,2 \cdot 0) \end{array}$	4.08 s	13.90 s	13.31 s	$\begin{aligned} & 5 \cdot 12 \mathrm{t} \\ & (4 \cdot 9) \end{aligned}$
$\begin{gathered} X X I \\ \mathbf{A} \end{gathered}$	$\begin{array}{r} 8.04 \mathrm{dd} \\ (7.9,1.2) \end{array}$	$\begin{array}{r} 7 \cdot 17 \mathrm{t} \\ (7 \cdot 9) \end{array}$	$\begin{array}{r} 7 \cdot 37 \mathrm{dd} \\ (7 \cdot 9,1 \cdot 2) \end{array}$	$4 \cdot 10 \mathrm{~s}$	13.90 s	13.33 s	$\begin{gathered} 5.07 \mathrm{dd} \\ (4.9,3.7) \end{gathered}$
$\begin{gathered} X X I I \\ \mathrm{D} \end{gathered}$		7.15-7.72 mt		3.88 s	-	-	5.34 mt
$\begin{gathered} X X I V \\ \mathrm{~A} \end{gathered}$	$\begin{array}{r} 8.02 \mathrm{dd} \\ (7 \cdot 9,1 \cdot 2) \end{array}$	$\begin{array}{r} 7.76 \mathrm{t} \\ (7.9) \end{array}$	$\begin{gathered} 7 \cdot 37 \mathrm{dd} \\ (7 \cdot 9,1 \cdot 2) \end{gathered}$	4.07 s	13.83 s	13.25 s	$5 \cdot 22 \mathrm{mt}$
$\begin{gathered} X X V \\ \text { B } \end{gathered}$		$7.25-8.11 \mathrm{mt}$		4.08 s			$\begin{aligned} & 5.06- \\ & 5.21 \mathrm{mt} \end{aligned}$

${ }^{a}$ Signal assignment is based on double resonance experiments and comparison with similar

Table I
analogues

Proton ${ }^{\text {a }}$					
H-8a	H-8e	H-10a	H-10e	H-1'	H-6'
		$\begin{aligned} & 2 \cdot 96 \mathrm{~d} \\ & (19 \cdot 5) \end{aligned}$	$\begin{gathered} 3 \cdot 21 \mathrm{dd} \\ (19 \cdot 5,0 \cdot 8) \end{gathered}$	$5 \cdot 12 \mathrm{mt}$	$\begin{aligned} & 1.09 \mathrm{~d} \\ & (6 \cdot 1) \end{aligned}$
		$\begin{aligned} & 2.99 \mathrm{~d} \\ & (19 \cdot 2) \end{aligned}$	$\begin{gathered} 3 \cdot 20 \mathrm{dd} \\ (19 \cdot 2,1 \cdot 2) \end{gathered}$	$\begin{array}{r} 4.86 \mathrm{mt} \\ W=6.1 \end{array}$	$\begin{aligned} & 1 \cdot 20 \mathrm{~d} \\ & (6 \cdot 4) \end{aligned}$
		$\begin{aligned} & 2 \cdot 92 \mathrm{~d} \\ & (18 \cdot 9) \end{aligned}$	$\begin{gathered} 3 \cdot 21 \mathrm{dd} \\ (18 \cdot 9,1 \cdot 0) \end{gathered}$	$\begin{aligned} & 4 \cdot 70- \\ & 5 \cdot 40 \mathrm{mt} \end{aligned}$	$\begin{aligned} & 1 \cdot 15 \mathrm{~d} \\ & (6 \cdot 1) \end{aligned}$
		$\begin{aligned} & 2.95 \mathrm{~d} \\ & (19 \cdot 5) \end{aligned}$	$\begin{gathered} 3 \cdot 21 \mathrm{dd} \\ (19 \cdot 5,0 \cdot 9) \end{gathered}$	$\begin{gathered} 4 \cdot 47- \\ 5 \cdot 18 \mathrm{mt} \end{gathered}$	$\begin{aligned} & 1 \cdot 18 \mathrm{~d} \\ & (6 \cdot 1) \end{aligned}$
$\begin{gathered} 1 \cdot 96 \mathrm{dd} \\ (14 \cdot 7,3 \cdot 7) \end{gathered}$	$\begin{gathered} 2 \cdot 44 \mathrm{ddd} \\ (14 \cdot 7,2 \cdot 4,1 \cdot 0) \end{gathered}$	$\begin{aligned} & 2 \cdot 93 \mathrm{~d} \\ & (19 \cdot 5) \end{aligned}$	$\begin{gathered} 3 \cdot 24 \mathrm{dd} \\ (19 \cdot 5,1 \cdot 0) \end{gathered}$	$\begin{array}{r} 4 \cdot 82 \mathrm{dd} \\ (1 \cdot 2,2 \cdot 4) \end{array}$	$\begin{aligned} & 1.26 \mathrm{~d} \\ & (6 \cdot 1) \end{aligned}$
	-			$\begin{array}{r} 4 \cdot 54 \mathrm{dd} \\ (1 \cdot 8,8 \cdot 6) \end{array}$	$\begin{aligned} & 1.28 \mathrm{~d} \\ & (6 \cdot 1) \end{aligned}$
		$\begin{aligned} & 2 \cdot 98 \mathrm{~d} \\ & (19.5) \end{aligned}$	$\begin{gathered} 3 \cdot 23 \mathrm{dd} \\ (19 \cdot 5,0 \cdot 8) \end{gathered}$	$\begin{array}{r} 4.88 \mathrm{mt} \\ W=6.1 \end{array}$	$\begin{aligned} & 1 \cdot 20 \mathrm{~d} \\ & (7 \cdot 3) \end{aligned}$
$\begin{gathered} 1 \cdot 94 \mathrm{dd} \\ (14 \cdot 7), 3 \cdot 6) \end{gathered}$		$\begin{aligned} & 2 \cdot 99 \mathrm{~d} \\ & (19 \cdot 0) \end{aligned}$	$\begin{gathered} 3 \cdot 24 \mathrm{dd} \\ (19 \cdot 0,1 \cdot 0) \end{gathered}$	$\begin{gathered} 4 \cdot 52 \mathrm{dd} \\ (9 \cdot 3,2 \cdot 1) \end{gathered}$	$\begin{aligned} & 1.16 \mathrm{~d} \\ & (7.3) \end{aligned}$
				5.04 mt	$\begin{aligned} & 0.95 \mathrm{~d} \\ & (6 \cdot 1) \end{aligned}$
				5.96 mt	$\begin{aligned} & 1.22 \mathrm{~d} \\ & (6.1) \end{aligned}$
$\begin{gathered} 2 \cdot 58 \mathrm{~d} \\ (14 \cdot 8,4 \cdot 9) \end{gathered}$	$\begin{gathered} 2 \cdot 13 \mathrm{ddd} \\ (14 \cdot 8,4 \cdot 9,0 \cdot 8) \end{gathered}$	$\begin{gathered} 3.30 \mathrm{~d} \\ (18 \cdot 6) \end{gathered}$	$\begin{aligned} & 2 \cdot 97 \mathrm{dd} \\ & (18 \cdot 6,0 \cdot 8) \end{aligned}$	$\begin{aligned} & 4.88 \mathrm{mt} \\ & W=6 \cdot 1 \end{aligned}$	$\begin{gathered} 1 \cdot 15 \mathrm{~d} \\ (6 \cdot 1) \end{gathered}$
$\begin{gathered} 2 \cdot 56 \mathrm{dd} \\ (14.7,3 \cdot 7) \end{gathered}$	$\begin{gathered} 2 \cdot 11 \mathrm{ddd} \\ (14 \cdot 7,4 \cdot 9,2 \cdot 2) \end{gathered}$	$\begin{aligned} & 3 \cdot 37 \mathrm{~d} \\ & (17 \cdot 1) \end{aligned}$	$\begin{gathered} 2 \cdot 94 \mathrm{dd} \\ (17 \cdot 1,1 \cdot 2) \end{gathered}$	$\begin{gathered} 4 \cdot 49 \mathrm{dd} \\ (9 \cdot 8,2 \cdot 4) \end{gathered}$	$\begin{aligned} & 1 \cdot 32 \mathrm{~d} \\ & (6 \cdot 1) \end{aligned}$
				5.34 mt	$\begin{aligned} & 1.08 \mathrm{~d} \\ & (7.3) \end{aligned}$
$\begin{gathered} 2 \cdot 01 \mathrm{dd} \\ (14 \cdot 6,3 \cdot 7) \end{gathered}$	$\begin{gathered} 2 \cdot 48 \mathrm{ddd} \\ (14 \cdot 6,2 \cdot 4,1 \cdot 0) \end{gathered}$	$\begin{aligned} & 2.92 \mathrm{~d} \\ & (18.9) \end{aligned}$	$\begin{gathered} 3 \cdot 24 \mathrm{dd} \\ (18 \cdot 9,1 \cdot 0) \end{gathered}$	$5 \cdot 22 \mathrm{mt}$	$\begin{aligned} & 1.27 \mathrm{~d} \\ & (6.7) \end{aligned}$
		$\begin{aligned} & 2 \cdot 93 \mathrm{~d} \\ & (19 \cdot 5) \end{aligned}$	$\begin{gathered} 3 \cdot 23 \mathrm{dd} \\ (19 \cdot 5,1 \cdot 0) \end{gathered}$	$\begin{aligned} & 5.06- \\ & 5.21 \mathrm{mt} \end{aligned}$	$\begin{aligned} & 1 \cdot 38 \mathrm{~d} \\ & (6 \cdot 1) \end{aligned}$

compounds; ${ }^{b} \mathrm{~A} \mathrm{CDCl}_{3}, \mathrm{~B} \mathrm{CDCl} 3+\mathrm{CD}_{3} \mathrm{OD} 4: 1, \mathrm{C} \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD} 3: 1, \mathrm{DCD}_{3} \mathrm{OD}$.

[^0]Table II
${ }^{13} \mathrm{C}$ Chemical shifts in some anthracyclinone analogues

Compound/Solvent ${ }^{\text {a }}$								
Carbon ${ }^{\text {b }}$	$\begin{gathered} V I I I^{c} \\ \mathrm{C} \end{gathered}$	$\begin{gathered} X, X I \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} X I I^{c} \\ \mathrm{~A} \end{gathered}$	$\underset{\mathrm{A}}{X I I I^{c}}$	$\begin{gathered} X I V \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} X V \\ \mathbf{A} \end{gathered}$	$\begin{gathered} X V I \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} X V I I \\ \mathrm{~B} \end{gathered}$
1	118.5	118.4	118.4	118.3	118.4	118.4	118.5	118.7
2	$135 \cdot 8$	$135 \cdot 5$	$135 \cdot 7$	$135 \cdot 2$	$135 \cdot 7$	$135 \cdot 7$	$135 \cdot 8$	135.8
3	119.8	119.7	119.8	119.8	119.8	119.8	$119 \cdot 8$	119.4
4	161.0	$160 \cdot 9$	161.0	161.0	161.0	161.0	$161 \cdot 1$	$161 \cdot 1$
5	$186.7^{\text {f }}$	$186 \cdot 7$	$186.7{ }^{\text {f }}$	$186.4{ }^{f}$	$186 \cdot 7^{\text {f }}$	$186.5{ }^{\text {f }}$	$186.5{ }^{\text {f }}$	$186.9{ }^{f}$
6	$155 \cdot 6^{9}$	$155 \cdot 8^{f}$	$155.9{ }^{9}$	$155.9{ }^{9}$	$155.9{ }^{9}$	155.9^{9}	$156 \cdot 1^{g}$	$155 \cdot 6^{9}$
7	$71 \cdot 0^{\text {h }}$	69.1	$69 \cdot 3^{\text {h }}$	$70 \cdot 6^{\text {h }}$	$69 \cdot 3^{\text {b }}$	$71.7^{\text {h }}$	$69 \cdot 4^{\text {h }}$	$71.6^{\text {h }}$
8	33.5	$33 \cdot 5$	$33 \cdot 8$	$33 \cdot 7$	$33 \cdot 8$	$33 \cdot 7$	$33 \cdot 8$	33.5
9	76.7	76.5	$73 \cdot 8$	$74 \cdot 2$	77.7	77.6	$76 \cdot 3$	$77 \cdot 2$
10	31.8	$32 \cdot 4$	$32 \cdot 0$	32.5	32.0	32.4	$32 \cdot 1$	31.7
11	$156 \cdot 1^{9}$	$156.5^{\text {f }}$	156.5^{g}	$156 \cdot{ }^{\text {g }}$	$156 \cdot 5^{9}$	$156 \cdot 2^{g}$	$156 \cdot 1^{g}$	$156 \cdot 1^{g}$
12	$186.9{ }^{\text {f }}$	$186 \cdot 7$	$187.0{ }^{\text {f }}$	$186.7^{\text {f }}$	$187 \cdot{ }^{\text {f }}$	$186.9{ }^{\text {f }}$	$186.7{ }^{\text {f }}$	$186.9{ }^{\text {f }}$
13	213.5	213.2	$213 \cdot 1$	213.0	212.7	212.9	213.2	212.9
14	24.8	$24 \cdot 8$	$25 \cdot 0$	25.0	25.0	25.0	25.0	25.0
40	121.0	121.0	122.5	n.o.	n.o.	n.o.	121.2	n.o.
$5 a$	111.5	111.2	111.4	$111 \cdot 4^{j}$	$111 \cdot{ }^{j}$	111.2 .	111.5^{j}	111.5^{j}
$6 a$	$133 \cdot{ }^{\text {i }}$	$134 \cdot 0^{g}$	$133 \cdot 9^{i}$	$133 \cdot 9^{i}$	$133 \cdot 7^{\text {i }}$	$133 \cdot 6^{\text {i }}$	$133 \cdot{ }^{\text {i }}$	$133 \cdot{ }^{\text {i }}$
$10 a$	$134 \cdot{ }^{\text {i }}$	$135 \cdot 0^{g}$	$135 \cdot 2^{i}$	$135 \cdot 2^{i}$	$135 \cdot 0^{i}$	$133.9{ }^{\text {i }}$	$134 \cdot 8^{i}$	$134 \cdot 6^{\text {i }}$
$11 a$	111.5	111.2	111.4	$113 \cdot{ }^{j}$	$111 \cdot 6^{j}$	111.2	111.5^{j}	$111 \cdot 5^{j}$
$12 a$	$134 \cdot 9{ }^{\text {i }}$	$135 \cdot{ }^{9}$	$135 \cdot 5^{\text {i }}$	$134 \cdot{ }^{\text {i }}$	$136 \cdot 6{ }^{\text {i }}$	$135.4{ }^{\text {i }}$	$135 \cdot 9^{\text {i }}$	$135 \cdot 9^{\text {i }}$
$\mathrm{CH}_{3} \mathrm{O}$	$56 \cdot 7$	56.7	$56 \cdot 7$	56.7	$56 \cdot 7$	56.7	$56 \cdot 8$	56.7
α	69.3	$67 \cdot 1$	$69 \cdot 3$	69.5	69.3	69.7	69.4	69.0
β	66.8	$66 \cdot 3$	$66 \cdot 7$	68.0	66.0	67.8	$66 \cdot 8$	68.2
I^{\prime}	97.5		$97 \cdot 2^{\text {d }}$	$99.0^{\text {d }}$	97.5	$99 \cdot 4$	$97 \cdot 1^{\text {d }}$	$99.3{ }^{\text {d }}$
2^{\prime}	29.8	$104.0{ }^{\text {e }}$	$35 \cdot 1$	36.4	$34 \cdot 4$	39.0	29.2	$31 \cdot 1$
3^{\prime}	$43 \cdot 8$	$31.7{ }^{\text {e }}$	$65 \cdot 8^{h}$	$69 \cdot 4^{h}$	$67.7^{\text {h }}$	$69 \cdot 4^{h}$	$66 \cdot 0^{h}$	$67.4{ }^{\text {h }}$
4^{\prime}	$65 \cdot 2^{\text {h }}$	$23.4{ }^{\text {e }}$	$68.9{ }^{\text {h }}$	$69 \cdot 5^{\text {h }}$	$67.7{ }^{\text {h }}$	$69 \cdot 4^{h}$	$66 \cdot 0^{h}$	$67 \cdot 4^{h}$
5^{\prime}	$69.3{ }^{\text {h }}$	$69.5{ }^{\text {e }}$	$69 \cdot 3^{\text {h }}$	$70 \cdot 0^{\text {h }}$	$69 \cdot 3^{h}$	71.6^{h}	$68 \cdot 6^{h}$	$69 \cdot 4^{\text {h }}$
6^{\prime}	$16 \cdot 8$		17.5	17.5	$16 \cdot 7$	17.5	16.6	16.5

${ }^{a} \mathrm{~A} \mathrm{CDCl}_{3}, \mathrm{~B} \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD} 4: 1, \mathrm{CCDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD} 3: 1, \mathrm{DCD}_{3} \mathrm{OD} ;{ }^{b}$ Signal assignment is based on the chemical shift consideration, signal multiplicity and comparison with related compounds. Signals in the same column bearing the same subscript can be interchanged; ${ }^{c}$ additional signals VIII: $20.7 \mathrm{q}, 22.6 \mathrm{q}, 170.6 \mathrm{~s}, 171.1 \mathrm{~s} ;$ XII: $20.9 \mathrm{q}, 170.2 \mathrm{~s}$; XIII: $20.8 \mathrm{q}, 170.1 \mathrm{~s}$;

Table II
(Continued)
\qquad
Compound/Solvent ${ }^{a}$

$\begin{gathered} X V I I I \\ \text { B } \end{gathered}$	$\begin{gathered} X I X \\ \mathrm{D} \end{gathered}$	$\begin{array}{r} X X \\ \mathrm{D} \end{array}$	$\begin{gathered} X X I \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} X X I I I \\ \mathrm{D} \end{gathered}$	$\begin{gathered} X X I V^{c} \\ \mathbf{A} \end{gathered}$	$\begin{gathered} X X V^{c} \\ \text { B } \end{gathered}$
118.6	$120 \cdot 3$	$120 \cdot 2^{k}$	118.4	$120 \cdot 5$	118.4	118.4
$135 \cdot 8$	$135 \cdot 1$	137.4	$135 \cdot 2$	137.4	$135 \cdot 7$	$135 \cdot 2$
119.8	$120 \cdot 3$	$121 \cdot 1^{k}$	119.8	$120 \cdot 5$	119.7	119.7
161.0	$162 \cdot 2$	$162 \cdot 2$	$160 \cdot 3$	162.4	161.0	161.0
$186.7{ }^{\text {f }}$	187.3^{f}	$186.5{ }^{\text {f }}$	n.o.	$187 \cdot 8^{f}$	$186.7^{\text {f }}$	186.9
$155.4{ }^{9}$	$156 \cdot 1^{g}$	$155.7{ }^{\text {g }}$	$155 \cdot 2^{f}$	$156 \cdot 1{ }^{\text {g }}$	$155.7{ }^{9}$	$155.8{ }^{\text {f }}$
$69.5{ }^{\text {h }}$	$73 \cdot 2^{\text {h }}$	$71 \cdot 9^{\text {h }}$	71.2^{g}	71.6^{h}	$69 \cdot 1^{h}$	70.7^{8}
$33.7{ }^{\text {k }}$	33.7	$33 \cdot 3$	38.6	38.6	33.7	33.7
75.8	77.7	$76 \cdot 3$	76.4	79.8	$76 \cdot 7$	$76 \cdot 7$
32.5	33.4	38.2	31.7^{9}	$33 \cdot 4^{j}$	32.8	33.3
$156 \cdot 1^{h}$	$157 \cdot 1^{g}$	157.5 ${ }^{\text {h }}$	156.5 ${ }^{\text {f }}$	157.7^{9}	$156 \cdot 2^{8}$	$156 \cdot 2^{f}$
187.0^{9}	$187.5^{\text {f }}$	187.7^{9}	n.o.	$187 \cdot 8^{f}$	$186.7{ }^{\text {f }}$	$186 \cdot 9$
213.1	215.2	211.0	n.o.	211.0	212.5	$212 \cdot 5$
$25 \cdot 0$	$25 \cdot 1$	24.6	24.6	24.6	24.8	25.0
120.9	121.0	122.8	n.o.	121.5	122.8	123.8
111.5 ${ }^{j}$	$112 \cdot{ }^{j}$	112.2^{j}	111.6	112.4	$133 \cdot{ }^{\text {i }}$	$111 \cdot 4$
$133.7^{\text {i }}$	$135 \cdot{ }^{\text {i }}$	$135 \cdot 8^{\text {i }}$	135.9^{h}	$131 \cdot{ }^{\text {i }}$	$133 \cdot 5^{\text {i }}$	$133 \cdot{ }^{6}$
$134.8{ }^{\text {i }}$	$135 \cdot{ }^{\text {j }}$	$135.8{ }^{\text {i }}$	$135.9^{\text {h }}$	$136 \cdot 3^{\text {i }}$	$135 \cdot 0^{i}$	$135 \cdot 0^{h}$
111.5^{j}	$112 \cdot{ }^{j}$	$112 \cdot 2^{j}$	111.6	112.4	111.5	111.4
$135 \cdot 5^{\text {i }}$	$137 \cdot 0^{i}$	$138.0{ }^{\text {i }}$	$136 \cdot 2^{\text {h }}$	$138 \cdot 3^{\text {i }}$	$135 \cdot 4^{i}$	$135 \cdot 4^{\text {h }}$
56.8	57.2	57.1	56.7	$57 \cdot 3$	56.5	56.7
69.5	67.8	71.6	69.4	$72 \cdot 0$	$54 \cdot 3$	54.5
$66 \cdot 4$	62.4	$68 \cdot 1$	69.4	$68 \cdot 1$	58.2	58.7
97.1	97.6	98.5	$100 \cdot 2$	98.9	94.5	95.9
$32 \cdot 2^{k}$	$32 \cdot 9$	30.0	$31.5{ }^{\text {i }}$	$34 \cdot 4{ }^{j}$	29.2	32.2
$49 \cdot 4$	49.5	48.3	$49 \cdot 1$	$49 \cdot 1$	$46 \cdot 3$	$46 \cdot 4$
$66 \cdot 1^{h}$	$67.2{ }^{\text {h }}$	$67.7{ }^{\text {h }}$	$68 \cdot 5^{h}$	$68.1{ }^{\text {h }}$	$66 \cdot 1{ }^{\text {h }}$	$66 \cdot 4^{\text {h }}$
$67.4{ }^{\text {h }}$	$70 \cdot 7^{\text {h }}$	$69.4{ }^{\text {h }}$	$68.7{ }^{\text {h }}$	$70 \cdot 4^{h}$	$68.7{ }^{\text {h }}$	$69.1{ }^{\text {h }}$
16.8	17.0	17.3	$16 \cdot 6$	17.5	16.5	$16 \cdot 9$

XXIV: $82.1 \mathrm{~s}, 82.7 \mathrm{~s} ; X X V: 82.0 \mathrm{~s}, 82.9 \mathrm{~s}$; ${ }^{d}$ direct couplings ${ }^{1} J[\mathrm{~Hz}]:$ XII: 169.9; XIII: $161 \cdot 1$; XVI: 172.0; XVII: $164 \cdot 1 ;{ }^{e}$ minor component: $32.0 \mathrm{t}, 69.8 \mathrm{t}, 104 \cdot 2 \mathrm{~d} ;{ }^{f-k}$ values in the same column and bearing the identical superscript may be interchanged.
(7S)-O-(2^{\prime}-O-($3^{\prime \prime}$-acetamido-4"-O-acetyl-2" $, 3^{\prime \prime}, 6^{\prime \prime}$-trideoxy-
$-\alpha-\mathrm{L}-\mathrm{lyx}$ (${ }^{2}$.
Mercuric bromide (40 mg), mercuric oxide (35 mg), and Potasit $3 \AA(5 \mathrm{~g})$ were added to the solution of aglycone $I V(150 \mathrm{mg}, 0.34 \mathrm{mmol}$) in chloroform (50 ml). Crude 3-acetamido-4-O--acetyl-2,3,6-trideoxy- α, β-L-lyxopyranosyl chloride ($4 \times 60 \mathrm{mg}, 0.95 \mathrm{mmol}$) was stepwise added

Table III
Mass spectra of selected compounds

	$V I I I{ }^{\text {a }}$		$X^{b}, X^{\text {b }}$		$X I I^{c}$		$\begin{gathered} X I I I^{d} \\ \% \end{gathered}$
	m / z	\%	m / z	\%	m / z	\%	
M^{+}	655	-	512	$0 \cdot 1^{e}$	656	0.005	0.01
M-43	*	-		-	613	0.01	0.02
Aglycone fragmentation ${ }^{30}$							
	442	-		$0 \cdot 1^{e}$		0.04	-
	382	-		-		-	$0.5{ }^{\text {e }}$
	362	32^{e}		$1{ }^{e}$		$0.6{ }^{\text {e }}$	$17^{\text {e }}$
	344	24^{e}		9^{e}		18^{e}	11^{e}
	339	6^{e}		6^{e}		10^{e}	$2^{\text {e }}$
	337	2		$3^{\text {e }}$		2^{e}	$2^{\text {e }}$
	329	2		$1{ }^{\text {e }}$		$2^{\text {c }}$	$2^{\text {c }}$
	321	1		$1{ }^{e}$		2^{e}	3^{e}
	319	1		$1{ }^{e}$		$2^{\text {e }}$	2^{e}
	309	1		$1{ }^{e}$		-	-
	301	15^{e}		3^{e}		$5^{\text {e }}$	6^{e}
Sugar fragmentation ${ }^{31}$							
C_{1}	214	14^{e}	104	3^{g}	215	$0 \cdot 8^{\text {e }}$	1^{e}
	172	11^{f}	101	13^{h}	172	3	4
D_{2}	143	22^{e}	87	9^{i}	155	9	10
D_{2}^{\prime}	101	42^{e}	71	100^{j}	144	3	3
C_{2}	95	$39^{\text {e }}$	58	7^{k}	133	3	3
H_{1}	86	33^{e}			130	9	9
	72	$18^{\text {e }}$			102	10	12
$\mathrm{CH}_{3} \mathrm{CO}^{+}$	43	100^{e}			100	5	6
					95	29	32
					87	18	22
					82	5	6
					73	42	48
$\mathrm{CH}_{3} \mathrm{CO}^{+}$	43	100^{e}			43	100	100

[^1](at time $0,10,20$, and 30 h). After 40 h at $35^{\circ} \mathrm{C}$ was the reaction stopped and the mixture filtered. Solvent was evaporated and the residue was chromatographed on a Sephadex LH-20 column in methanol. The first fraction was purified by preparative chromatography on Kieselgel F60 in the system S1. Compound VIII was obtained ($115 \mathrm{mg}, 52 \%$), m.p. $245^{\circ} \mathrm{C}$ (hexane-chloroform),

Table IV

Mass spectra of selected compounds

	m / z	$\begin{gathered} X V I^{a} \\ \% \end{gathered}$	$\begin{gathered} X X^{b} \\ \% \end{gathered}$	$\begin{gathered} X X I^{c} \\ \% \end{gathered}$	$\begin{gathered} X X I V^{d} \\ \% \end{gathered}$
M^{+}	667	$0.01^{\text {c }}$	0.2	0.07	-
M-18	649	-	0.05	--	-
M-43	624	$0 \cdot 005^{\circ}$	0.02	-	-
Aglycone fragmentation ${ }^{30}$					
	442	-	0.7	0.6	-
	382	7	3	3	-
	362	$79^{\text {e }}$	78	82	5
	344	50	32	39	3
	339	23	-	-	-
	337	42	-	-	-
	329	11	7	6	-
	321	13	-	-	-
	319	13	10	12	-
	309	14	3	-	-
	301	29	17	24	1
Sugar fragmentation ${ }^{31}$					
C_{1}	226	20	18	11	6
D_{1}	213	6	-	-	-
A_{3}	192	24	16	10	5
F_{1}	168	32	14	14	8
D_{2}	155	35	32	37	30
H_{1}	140	41	17	36	11
C_{2}	113	64	59	39	100
C_{3}	95	20	14	12	10
	89	70	80	68	15
D_{2}^{\prime}	86	38	39	47	20
F_{2}	37	-	-	-	-
$\left[\mathrm{CF}_{3}\right]^{+}$	69	37	24	25	41
E_{3}	58	64	34	49	23

[^2]$[\alpha]_{D}^{20}+169$ (c 0.15 , chloroform), $R_{F} 0.45$ (S 1). For $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{NO}_{13}$ (655.7) was calculated: $60.45 \% \mathrm{C}, 5.69 \% \mathrm{H}, \mathbf{2} \cdot \mathbf{1 4 \%} \mathrm{N}$; found: $\mathbf{6 0} \cdot \mathbf{3 1} \% \mathrm{C}, 5 \cdot \mathbf{4 2} \% \mathrm{H}, \mathbf{2} \cdot \mathbf{0 2} \% \mathrm{~N}$.

Reaction of IV with 3-acetamido-4-O-acetyl-2,3,6-trideoxy- α, β-L-lyxopyranosyl chloride carried out in tetrahydrofuran gave another product in 69% yield, m.p. $119-122^{\circ} \mathrm{C}$. According to mass and NMR spectra (Tables I-III), it was identified as a mixture of two compounds having the structures X and $X I$.

> (7S)-O-($2^{\prime}-\mathrm{O}-\left(3^{\prime \prime}\right.$-acetamido- $2^{\prime \prime}, 3^{\prime \prime}, 6^{\prime \prime}$-trideoxy- $\alpha-\mathrm{L}$-lyxopyranosyloxy)ethyl)daunomycinone $(I X)$

Solution of compound VIII ($50 \mathrm{mg}, 0.076 \mathrm{mmol}$) in $0.1 \mathrm{~m}-\mathrm{NaOH}(20 \mathrm{ml})$ was allowed to stand for 1 h and then was carbon dioxide bubbled through. The solution was extracted with chloroform, solvent was evaporated and the residue was chromatographed on Silufol in system S1. Compound $I X\left(44 \mathrm{mg}, 94 \%\right.$) was obtained; m.p. $223-225^{\circ} \mathrm{C}$ (chloroform-hexane), $[\alpha]_{\mathrm{D}}{ }^{\circ}+133^{\circ}$ (c $0 \cdot 1$, chloroform), $R_{F} 0.15(\mathrm{~S} 1)$. For $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NO}_{12}$ (613.6) was calculated: $60.68 \% \mathrm{C}, 5.75 \% \mathrm{H}$, $2 \cdot 28 \% \mathrm{~N}$; found: $60 \cdot 42 \% \mathrm{C}, 5 \cdot 71 \% \mathrm{H}, \mathbf{2} \cdot 19 \% \mathrm{~N}$.
$(7 S)-\mathrm{O}-\left(2^{\prime}-\mathrm{O}-\left(3^{\prime \prime}, 4^{\prime \prime}-\mathrm{di}-\mathrm{O}-\mathrm{acetyl}-2^{\prime \prime}, 6^{\prime \prime}\right.\right.$-dideoxy- $\alpha-$ and
β-L-arabinopyranosyloxy)ethyl)danomycinonc (XII and XII)

Crude 3,4-di-O-acetyl-2,6-dideoxy- α, β-L-arabinopyranosyl chloride (II) ($250 \mathrm{mg}, 1 \mathrm{mmol}$), mercuric cyanide (120 mg), mercuric bromide (180 mg), and Potasit $3 \AA(3 \mathrm{~g})$ were added to the solution of aglycone IV ($200 \mathrm{mg}, 0.45 \mathrm{mmol}$) in chloroform (40 ml). The mixture was stirred 15 h at $70^{\circ} \mathrm{C}$. Insoluble portions were filtered off, solvent was removed and the residue was chromatographed on a silica gel column in the system S 2 . Two main fractions were further purified by preparative thin-layer chromatography on Silufol in the system S3. The α-anomer XII (85 mg , 28.7%), m.p. $170-172^{\circ} \mathrm{C}$ (methanol), $[\alpha]_{\mathrm{D}}^{20}+146^{\circ}$ (c 0.3 , chloroform), $R_{F} 0.70$ (S1) and the β-anomer XIII ($73 \mathrm{mg}, 25 \%$), m.p. $103^{\circ} \mathrm{C}$ (precipitated with hexane from chloroform solution), $[\alpha]_{D}^{20}+246^{\circ}$ (c $0 \cdot 2$, chloroform), $R_{F} 0 \cdot 78$ (SI). For $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{O}_{14}$ ($656 \cdot 4$) was calculated: $60 \cdot 36 \%$ C, $5.53 \% \mathrm{H}$; found in XII: $60.45 \% \mathrm{C}, 5.38 \% \mathrm{H}$; found in XIII: $60.49 \% \mathrm{C}, 5 \cdot 40 \% \mathrm{H}$.
($7 S$)-O-($2^{\prime}-\mathrm{O}-\left(2^{\prime \prime}, 6^{\prime \prime}\right.$-dideoxy- $x-\mathrm{L}$-arabinopyranosyloxy)ethyl)daunomycinone (XIV)
Excess of $0.5 \mathrm{mmol} 1^{-1}$ sodium methoxide was added to the solution of compound XII (35 mg , 0.053 mmol) in methanol (15 ml) and the mixture was allowed to stand for 1 h at room temperature. Water (60 ml) was then added, the solution was saturated with gaseous carbon dioxide and extracted with chloroform. Compound XIV ($29.5 \mathrm{mg}, 96 \%$), m.p. $121^{\circ} \mathrm{C}$ (methanol), $[\alpha]_{\mathrm{D}}^{20}+117^{\circ}$ (c 0.4 , chloroform), $R_{F} 0.21$ (S1) was isolated from the dried extract upon evaporation of the solvent. For $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{12}$ ($572 \cdot 6$) was calculated: $60.84 \% \mathrm{C}, 5.63 \% \mathrm{H}$; found: $60.57 \% \mathrm{C}, 5.41 \% \mathrm{H}$. Similarly was from XIII ($25 \mathrm{mg}, 0.038 \mathrm{mmol}$) prepared compourd $X V(20 \mathrm{mg}, 92 \%), \mathrm{m} . \mathrm{p}$. $127-128^{\circ} \mathrm{C}$ (methanol), $[\alpha]_{\mathrm{D}}^{2 \mathrm{O}}+95^{\circ}$ (c $0 \cdot 1$, chloroform), $R_{F} 0.27$ (SI). For $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{12}(572 \cdot 6)$ was calculated: $60.84 \% \mathrm{C}, 5 \cdot 63 \% \mathrm{H}$; found: $60.49 \% \mathrm{C}, 5.58 \% \mathrm{H}$.

> (7S)-O-($\left(2^{\prime}-\mathrm{O}-\left(3^{\prime \prime}\right.\right.$-trifluoroacetamido- $2^{\prime \prime}, 3^{\prime \prime}, 6^{\prime \prime}$-trideoxy- $\alpha-$ and β-lyxopyranosyloxy)ethyl)daunomycinone $(X V I$ and $X V I I)$

Mercuric oxide (50 mg), mercuric bromide (70 mg), mercuric cyanide (75 mg), and Potasit $3 \AA$ $(4 \mathrm{~g})$ were added to the solution of aglycone $I V(180 \mathrm{mg}, 0.41 \mathrm{mmol})$ in chloroform (35 ml). 3-Trifluoroacetamido-4-O-trifluoroacetyl-2,3,6-2,3,6-trideoxy- α, β-L-lyxopyranosyl chloride (VII) was stepwise added ($4 \times 50 \mathrm{mg}$, at time $0,3,10$, and 15 h). The mixture was heated to $50-60^{\circ} \mathrm{C}$
for 22 h . Unsoluble portions were filtered off and the solvent was removed. (30 ml) was added and after 1 h reflux was added water ard extracted with chloroform. Solvent was removed and the residue was chromatographed on a Sephadex LH-20 column in chloroform. Three fractions were obtained: (i) compound $X V I\left(137 \mathrm{mg}, 51 \%\right.$) m.p. $247-248^{\circ} \mathrm{C}$ (methanol), $[\alpha]_{\mathrm{D}}^{20}-170 \cdot 0^{\circ}$ (c 0.1, chloroform), $R_{F} 0.42$ (S1); (ii) compound $X V I I$ ($65 \mathrm{mg}, 24 \%$), m.p. $223-225^{\circ} \mathrm{C}$ (methanol), $[\alpha]_{\mathrm{D}}^{20}+166.7^{\circ}$ (c $0 \cdot 1$, chloroform), $R_{F} 0.48$ (S1); (iii) compound $I V$ starting ($30 \mathrm{mg}, 16 \%$). For $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NO}_{12} \mathrm{~F}_{3}(667 \cdot 3)$ was calculated: $55.77 \% \mathrm{C}, 4.83 \% \mathrm{H}, 2.10 \% \mathrm{~N}$; found in XVI: $55.62 \% \mathrm{C}$, $4.72 \% \mathrm{H}, 2.02 \% \mathrm{~N}$; found in XVII: $55.54 \% \mathrm{C}, 4.69 \% \mathrm{H}, 2.04 \% \mathrm{~N}$.
(7S)-O-(2'-O-($3^{\prime \prime}$-amino- $2^{\prime \prime}, 3^{\prime \prime}, 6^{\prime \prime}$-trideoxy- $\alpha-$ L-lyxopyranosyloxy)ethyl)daunomycinone (XVIII)
Aqueous $0.1 \mathrm{~m}-\mathrm{NaOH}(25 \mathrm{ml})$ was added to the solution of compound $X V 1(40 \mathrm{mg}, 0.06 \mathrm{mmol})$ in the mixture of methanol (30 ml) and acetone (5 ml). The mixture was left standing 3 h at $28^{\circ} \mathrm{C}$. Carbon dioxide was bubbled through and extraction with chloroform was performed. Solvent was removed, an excess of 0.5% oxalic acid was added to the residue and upon neutralization with sodium hydrogen carbonate was the extraction with chloroform repeated. The volume of extract was reduced and the residue was precipitated with hexane. Compound XVIII ($22 \mathrm{mg}, 64 \%$), m.p. $197-198^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}+344^{\circ}\left(c 0.03\right.$, chloroform), $R_{F} 0.27(\mathrm{~S} 6)$ was obtained. For $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}_{11}$ (571.6) was calculated: $60.94 \% \mathrm{C}, 5.82 \% \mathrm{H}, \% \mathrm{~N}$; found: $60.85 \% \mathrm{C}, 5.87 \% \mathrm{H}, 2.37 \% \mathrm{~N}$.
(7S)-O-(2'-O-(3"-amino- $2^{\prime \prime}, 3^{\prime \prime}, 6^{\prime \prime}$-trideoxy- β-L-lyxopyranosyloxy)ethyl)daunomycinone ($X I X$)
Solution of compound $X V I I I(30 \mathrm{mg}, 0.045 \mathrm{mmol})$ in aqueous $0.1 \mathrm{~m}-\mathrm{NaOH}(20 \mathrm{ml})$ was allowed to stand 1.5 h at $28^{\circ} \mathrm{C}$. Carbon dioxide was then introduced and the mixture was extracted with chloroform. Compound $X I X$ was prepared in 89.5% yield, m.p. $178^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}+244(c 0.05$, chloroform), $R_{F} 0.30$ (S6).
$(7 R)-\mathrm{O}-\left(2^{\prime}-\mathrm{O}-\left(3^{\prime \prime}\right.\right.$-trifluoroacetamido $-2^{\prime \prime}, 3^{\prime \prime}, 6^{\prime \prime}$-trideoxy- $\alpha-$
and β-L-lyxopyranosyloxy)ethyl)daunomycinone $(X X$ and $X X I)$

Mercuric oxide (150 mg), mercuric bromide (80 mg), mercuric cyanide (140 mg), ard Potasit (3 g) were added to the solution of aglycone $V(120 \mathrm{mg}, 0.27 \mathrm{mmol}$) in chloroform (30 ml) and nitromethane (5 ml). Solution of $V I I(185 \mathrm{mg}, 0.47 \mathrm{mmol})$ in the $1: 1$ mixture of chloroform and nitromethane (12 ml) was dropwise added. The mixture was stirred 5 h at $60^{\circ} \mathrm{C}$. Unsoluble portions were filtered off and solvents were removed. Absolute methanol (40 ml) was added to the residue and refluxed for 1.5 h . Upon evaporation to dryress, water was added and extracted with chloroform. Followed chromatography on Sephadex LH 20 and column chromatography on silica gel in the system S 4 . The first fraction contained compound $X X I(15 \mathrm{mg}, 8 \%)$, m.p. $137^{\circ} \mathrm{C}$ (chloroform), $R_{F} 0.23$ (S1), second fraction - compound $X X$ ($32 \mathrm{mg}, 73 \%$), m.p. 124 to $125^{\circ} \mathrm{C}$ (chloroform-methanol), $R_{F} 0.32(S 1)$, third fraction - aglycone $V(12 \mathrm{mg}, 10 \%)$.

Solution of compound $X X(50 \mathrm{mg}, 0.075 \mathrm{mmol})$ in aqueous $0.1 \mathrm{~m}-\mathrm{NaOH}(30 \mathrm{ml})$ was allowed to stand 0.5 h at $28^{\circ} \mathrm{C}$, then saturated with carbon dioxide and extracted with chloroform. Free glycoside $X X I I$, m.p. $187-188^{\circ} \mathrm{C}$ (methanol, chloroform-hexane) was isolated in 91% yield. For $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}_{11}$ (571.6) was calculated: $60.94 \% \mathrm{C}, 5.82 \% \mathrm{H}, 2.45 \% \mathrm{~N}$; fourd: $60.71 \% \mathrm{C}$, $5.64 \% \mathrm{H}, 2.41 \% \mathrm{~N}$. Similarly was prepared the glycoside $X X I I I$ from $X X I$ in amount sufficient for biological tests only.
(7S)-O-(4'-O-($3^{\prime \prime}$-trifluoroacetamido- $2^{\prime \prime}, 3^{\prime \prime}, 6^{\prime \prime}$-trideoxy- α-L-lyxopyranosyloxy)-2-butynyl)daunomycinone ($X X I V$)

Mercuric cyanide (180 mg) and Potasit (3 g) were added to the solution of aglycone $V I(215 \mathrm{mg}$, 0.46 mmol) in chloroform (35 ml) and nitromethane $/(10 \mathrm{ml}$). Portionwise was added chloroform solution of 3-trifluoroacetamido-4-O-trifluoroacetyl-2,3,6-trideoxy- α, β-L-lyxopyranosyl chloride $V I I$ ($370 \mathrm{mg}, 148 \mathrm{mmol}$). The mixture was stirred 6 h at $50^{\circ} \mathrm{C}$. Chromatographic separation was performed on a silica gel column in system $\mathbf{S 5}$ and on Sephadex LH-20 in chloroform. Three fractions were obtained: (i) compound $X X I V$: ($243 \mathrm{mg}, 76 \%$), m.p. $193^{\circ} \mathrm{C}$ (methanol), $R_{F} 0.65$ (S1), (ii) unreacted $V I$ ($37 \mathrm{mg}, 17 \%$) (iii) unidentified compound (1.2 mg). For $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{NO}_{12} \mathrm{~F}_{3}$ (691.6) was calculated: $57.31 \% \mathrm{C}, 4.67 \% \mathrm{H}, \mathbf{2 . 0 2 \%} \mathrm{N}$; found: $57.45 \% \mathrm{C}, \mathbf{4 . 8 3} \% \mathrm{H}, 1.89 \% \mathrm{~N}$.
(7S)-O-(4'-O-($3^{\prime \prime}$-amino- $2^{\prime \prime}, 3^{\prime \prime}, 6^{\prime \prime}$-trideoxy- $\alpha-$ L-lyxopyranosyloxy)-2-butynyl)daunomycinone ($X X V$)

Deacetylation of $X X I V$ in $0 \cdot 1 \mathrm{~m}-\mathrm{NaOH}\left(2 \mathrm{~h}, 25^{\circ} \mathrm{C}\right)$ provided glycoside $X X V$, m.p. $197^{\circ} \mathrm{C}$ (chloro-form-methanol), $\mathrm{R}_{F} 0.44$ (S 6) in 82% yield. For $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NO}_{11}$ (595.6) was calculated: $62.52 \% \mathrm{C}$, $5 \cdot 58 \% \mathrm{H}, \mathbf{2} \cdot \mathbf{3 5} \% \mathrm{~N}$; found: $\mathbf{6 2} \cdot \mathbf{2 7 \%} \mathrm{C}, 5 \cdot 51 \% \mathrm{H}, \mathbf{2} \cdot \mathbf{1 7 \%}$ N.

REFERENCES

1. Arcamone F.: Med. Res. Rev. 4, 153 (1984).
2. Mathe G., Maral R., De Jager R., (Eds): Anthracyclines: Current Status and Future Developments. Musson Publishing, New York 1983.
3. Brown J. R.: Top. Mol. Struct. Biol. 3, 57 (1983).
4. Aubel-Sadron G., Londos-Gagliardi D.: Biochimie 66, 333 (1984).
5. Di Marco A.: Drugs Exp. Clin. Res. 9, 751 (1983).
6. Matsuzawa Y., Oki T., Takeuchi T., Umezawa H.: J. Antibiot. 34, 1596 (1981).
7. Jizba J. V., Sedmera P., Vokoun J., Lipavská H., Podojil M., Vaněk Z.: Collect. Czech. Chem. Commun. 49, 653 (1984).
8. Horton D., Nickol R. G., Weckerle W., Winter-Mihaly E.: Carbohydr. Res. 76, 269 (1979).
9. Fuchs E.-F., Horton D., Weckerle W., Winter B.: J. Antibiot. 32, 223 (1979).
10. Boivin J., Pais M., Monneret C.: Carbohydr. Res. 79, 193 (1980).
11. Boivin J., Montagnac A., Monneret C., Pais M.: Carbohydr. Res. 85, 223 (1980).
12. Horton D., Priebe W., Varela O.: Carbohydr. Res. 130, C1, (1984).
13. Fuchs E.-F., Horton D., Weckerle W., Winter-Mihaly E.: J. Med. Chem. 22, 406 (1979).
14. Horton D., Priebe W., Turner W. R.: Carbohydr. Res. 94, 11 (1981).
15. Medgyes G., Pelczer I., Kuszmann J.: Carbohydr. Res. 111, 225 (1983).
16. Horton D., Priebe W., Varela O.: J. Antibiot. 37, 853 (1984).
17. Sztaricskai F., Menyhart M., Bognar B., Neszmelyi A.: Carbohydr. Res. 100, C14 (9182).
18. Arcamone F., Penco S., Radaelli S., Hanessian S.: J. Med. Chem. 19, 1424 (1976).
19. Arcamone F., Bernardi L., Patelli B., Giardino P., Di Marco A., Casazza A. M., Soranzo C., Pratesi G.: Experientia 34, 1255 (1978).
20. Krohn K., Broser E.: J. Org. Chem. 49, 3760 (1984).
21. Tanaka H., Yoshioka T., Shimanuchi Y., Matsushita Y., Matsuzawa Y., Oki T., Ishikawa T.: J. Antibiot. 35, 312 (1982).
22. Tanaka H., Yoshioka T., Yoshimoto A., Shimanuchi Y., Ishikawa T., Takeuchi T., Umezawa H.: J. Antibiot. 36, 601 (1983).
23. El Khadem H. S., Matsuura D.: Carbohydr. Res. 101, C1, (1982).
24. Tanaka H., Yoshioka T., Shimanuchi Y., Yoshimoto A., Ishikura T., Naganawa H., Takeuchi T., Umezawa H.: Tetrahedron Lett. 25, 3355 (1984).
25. Arcamone F., Penco S., Vigevanni A.: Cancer. Chemother. Rept. 6, 123 (1975).
26. Bock K., Lundt I., Pedersen C.: Tetrahedron Lett. 1973, 1037.
27. Bock K., Pedersen C.: J. Chem. Soc., Perkin Trans. 2, 1974, 293.
28. Marsh J. P. jr, Mosher C. W., Acton E. M., Goodmann I.: Chem. Commun. 1967, 973.
29. Iselin B., Reichstein T.: Helv. Chim. Acta 27, 1146 (1943).
30. Arcamone F., Franceschi G., Penco S.: Tetrahedron Lett. 1969, 1008.
31. Vigevani A., Gioia B., Cassinelli G.: Carbohydr, Res, 32, 321 (1974).

Translated by the author (P.S.).

[^0]: Collect. Czech. Chem. Commun. (Vol. 54) (1989)

[^1]: ${ }^{a} T_{\mathrm{d}} 190^{\circ} \mathrm{C} ;{ }^{b} T_{\mathrm{d}} 170^{\circ} \mathrm{C} ;{ }^{c} T_{\mathrm{d}} 180^{\circ} \mathrm{C} ;{ }^{d} T_{\mathrm{d}} 180^{\circ} \mathrm{C}$; ${ }^{a}$ confirmed by high-resolution measurement; ${ }^{f} \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{3}+\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4} ;{ }^{g} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3} ;{ }^{h} \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2} ;{ }^{i} \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2} ;{ }^{j} \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O} ;{ }^{k} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$.

[^2]: ${ }^{a} T_{\mathrm{d}} 190^{\circ} \mathrm{C} ;{ }^{b} T_{\mathrm{d}} 190^{\circ} \mathrm{C} ;{ }^{c} T_{\mathrm{d}} 190^{\circ} \mathrm{C} ;^{d} T_{\mathrm{d}} 150^{\circ} \mathrm{C} ;{ }^{e}$ confirmed by high-resolution measurement. Collect. Czech. Chem. Commun. (Vol. 54) (1989)

